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ABSTRACT 
In multi-machine power system the  order  of the states matrix is 

very large. The main objectives of order reduction is to design a 

controller of lower order  which  can  effectively control the 

original high order system so  that  the  overall  system  is  of  

lower order  and  easy  to  understand.  The state space matrices 

of the reduced  order system are chosen such that the dominant 

eigenvalues of the full order system are unchanged. The other 

system parameters are chosen using the PSO  with objective 

function to minimize the mean squared errors between the 

outputs of the full order system and the outputs of the reduced 

order model when the inputs are unit step. This paper presents a 

comparatively study of design of fast output sampling feedback 

controllers via reduced  order model using Particle PSO method, 

and Davison method technique for multi-machine system. 

KEYWORDS: Fast output sampling 

feedback, power system stabilizer, reduced order model, particle 

swarm optimization, Davison method. 

 

 

1. INTRODUCTION 
 

The dynamic stability of power  systems is an 

important factor for secure system operation. Low- 

frequency oscillation modes have been observed 

when power systems are interconnected by weak tie 

lines. The low-frequency oscillation mode, which 

has poor  damping  in  a  power  system, is also called 

the electromechanical oscillation  mode and usually 

occurs in the frequency range of 0.1–2.0 Hz. The power  

system stabilizer (PSS) has  been widely  used  for  

mitigating   the effects of low- frequency oscillation 

modes. 

The construct and parameters of PSS have been 

discussed in many studies. Currently, many plants 

prefer to employ conventional lead-lag structure PSSs, 

due to the ease of online tuning and reliability. The 

widely used conventional  power system stabilizers  

(CPSS)  are designed using the theory of phase 

compensation in the  frequency  domain and are 

introduced as a lead- lag compensator. The parameters 

of CPSS are determined based on the linearized model 

of  the  power  system. In order to provide perfect 

damping over  a  wide  operation  range, the CPSS  

parameters  should  be fine tuned in response  to  both  

types of oscillations. Since power systems  are  highly   

nonlinear systems, with configurations and parameters 

which alter through time, the CPSS design based on the 

linearized model of the power 
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system cannot guarantee its performance in a 

practical operating environment. The design of such 

PSSs requires the determination (or tuning) of few 

parameters for each machine viz. the overall dc gain, 

the wash out circuit time constant, and the various 

constants for the two lead networks. 

The  feedback   gains are piecewise 

constant, their method could be easily implemented 

and indicate a new possibility. Such a control law 

can stabilize   a much  larger  class   of systems 

than the static output feedback Due  to   the  geographically distributed nature of power systems, a decentralized control scheme may be more   feasible  than a  centralized control scheme. In the decentralized power system stabilizer, the 

control input for each machine should be a function 

of the output of that machine alone.   This  can be  achieved  by designing a decentralized PSS using periodic output feedback technique in which the gain matrix should have all off diagonal terms zero or are very small compare to the diagonal terms. In a decentralized 

PSS, to activate the proposed controller at same 

instant, a proper    synchronization   signal    is required to be sent to all machines. All PSSs can be applied simultaneously to the respective   machines.   So the decentralized stabilizer design problem can be translated into a problem of 

diagonal gain matrix design for multi- 
machine power system [23-31]. 
 

2. MATERIAL AND METHODS 

Small-signal stability is the ability of the power system 

to remain in synchronism under normal operating 

condition and regain an  acceptable state of equilibrium 

when subjected to small disturbances. Since the 

disturbance is considered to be small, the equations that 

describe the  resulting dynamics of the system may be 

linearized. Instability that may  result is of two types: 

1. Steady increase in generator rotor angle due to lack of 

synchronizing torque; 

2. Rotor oscillations of increasing amplitude due to lack 

of sufficient damping torque. 

In today's practical power systems, the small-signal 

stability problem  is usually one of insufficient 

damping of system oscillations. For the analysis of 

small-signal stability,  linearized models are generally 

considered to be adequate for representation of the 

power system and its various components. 

 BASIC CONCEPT 
 

The basic function of a power system stabilizer is to 

extend the  stability limits by modulating generator 

excitation, to provide damping to the oscillation of 

synchronous machine rotors relative to one another. 

The oscillations of concern typically occur in the 

frequency range of approximately 0.2 to 3.0 Hz, and 

insufficient damping of these oscillations may limit the 

ability to transmit the power. To provide 
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damping, the stabilizer must produce a component of 

motor slip which is in phase with reference  voltage 

variations. For input signal,  the transfer function of 

the stabilizer must compensate for the gain and phase 

of excitation system, the generator  and the power 

system, which collectively determine the transfer 

function from the stabilizer output to the component 

of mechanical speed. This can be modulated via 

excitation system [1]. 

 PERFORMANCE OBJECTIVES 

Power system stabilizers can extend power transfer 

stability limits  which are characterized by lightly 

damped or spontaneously growing oscillations in the 

0.2 to 3.0 Hz frequency range. This is accomplished 

via excitation control to contribute damping to the 

system modes of oscillations. Consequently, it is the 

stabilizer's ability to enhance damping under the least 

stable conditions, i.e., “the performance conditions", 

which is important. Additional damping is primarily 

required under the conditions of weak transmission 

and heavy load as occurs, for example, when 

attempting to transmit the power over long 

transmission lines from the remote generating plants 

or relatively weak tie between systems. 

Contingencies, such as line outage, often precipitate 

such 

 

 
 
Figure 1: Block diagram of PSS [1]. 

 

 CLASSICAL STABILIZER IMPLEMENTATION 

PROCEDURE 
 

The block diagram used in industry is shown in Fig. 

2.1[4]. It consists of a washout circuit, dynamic 

compensator, torsional filter and limiter.  The washout 

circuit is provided  to eliminate steady-state bias in the  

output of PSS which will modify the generator terminal 

voltage. The PSS is expected to respond only to 

transient variations in the input signal (rotor  slip) and 

not to the dc offset in the signal. The washout circuit 

acts essentially as a high pass filter and it must pass all 

frequencies that are of interest. 

 

Implementation of a power system stabilizer implies 

adjustment of its frequency characteristic and gain to 

produce the desired damping of the system oscillations 

in the frequency range of 0.2 to 3.0 Hz. The transfer 

function of a generic power system stabilizer having 

washout circuit and a dynamic compensator may be 

expressed as 

conditions.   Hence,   system   normally 
having   adequate   damping   can often H(s)  K 

sTw (1 sT1 )(1 sT3 ) s 
(1 sT )(1 sT )(1 sT ) (2.1) 

w 2 4 

benefit from stabilizers during such conditions. where, Ks represent stabilizer gain. 
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The stabilizer frequency characteristic is adjusted by 

varying the  time constant Tw, T1, T2, T3 and T4. The 

output of PSS must be limited to prevent the PSS 

acting to counter the action of AVR. 

A number of sequential and simultaneous approaches 

for the tuning of these parameters have been reported 

in literature although these approaches have been 

used and produce satisfactory results regarding the 

damping of local modes of oscillation; their outcome 

may not be the optimal. This is due to the restrictive  

assumption made and the intuitive nature of the 

design process. A power system stabilizer can be 

made more effective if it is designed and applied 

with the knowledge of associated power system 

characteristics. Power system stabilizer must  provide 

adequate damping for a range of frequencies of the 

power system oscillation modes. To begin with, 

simple analytical models, such as that of a single 

machine connected to an infinite bus system, can be 

useful in determining the frequencies of local mode 

oscillations. Power system stabilizer should also be 

designed to provide stable operation for the weak 

power system conditions and  associated loading. A 

designed stabilizer must ensure for the robust 

performance and satisfactory operation with an 

external system reactance ranging from 20% to 80% 

on the unit rating [5]. 

MULTI-MACHINE POWER SYSTEM ANALYSIS 

Analysis of practical power system involves the 

simultaneous solution of equations consisting of 

synchronous machines and the associated excitation 

system and prime movers, interconnecting transmission 

network, static and dynamic load (motor loads), and 

other devices such as HVDC converters, static var 

compensators. The dynamics of the machine rotor 

circuits, excitation systems, prime mover and other 

devices are represented by differential equations. The 

result is that the complete system model consists of 

large number of ordinary differential and algebraic 

equations. 

Model 1.0 is assumed for synchronous 

machines by neglecting the damper windings. In 

addition, the following assumptions are made for 

simplicity [4]. 

1. The loads are represented by constant 

impedances. 

2. Transients saliency is ignored by considering xq= 

x’
d. 

3. Mechanical power is assumed to be constant. 

4. Efd is single time constant AVR. 
 

 STATE SPACE MODEL OF 10 MACHINE AND 

39 BUS POWER 

SYSTEM (MACHINE MODEL 1.0): 

GENERATOR EQUATIONS 
 

The machine equations (for kth machine) are 
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pE'qk 
1 

T'
d 0k 

 E' (xdk  x'dk)idk  E fdk , 
 

 REVIEW ON FAST OUTPUT SAMPLING 

METHOD 
pk  w B (Smk  Smk 0 ), 

pSmk  
1 
 D 2H 

k
 (Smk  S

mk 0)  Pmk  Pek 
With Fast output sampling approach, it is possible to 

simultaneously realize a given state feedback gain for a 

family of linear, observable models. This 

The state space model of a 10-machine 39 bus 

system as shown in Fig. 2.5 can be obtained using 

machine data, line data and load flow data as given in 

[1] as 
                     

x  [A]x  [B](Vref  Vs ), 
 

 

y  [C]x, 

Where 

approach requires increasing the low rank of the 

measurement matrix of an associated discretized 

system, which can be achieved by sampling  the output 

several times during one input sampling interval, and 

constructing the control signal from these output 

samples. Such a control law can stabilize a much larger 

class of 

x  [x1, x 2 ,..., x10 ]T , 
and 

systems than the static output feedback. In 

fast output sampling 

y  [y1, y2 ,...., y10 ]
T. feedback technique gain matrix is 

xk (k=1,10) denotes the states of kth machine, and yk 

(k=1,10) denotes the output of the kth machine. 

The elements (sub matrices of 10 

10) of A matrix depend on the  machine and network 

parameters. 

 

Figure 2: Single line diagram of 10 machines and 39 bus System [1]. 

generally full. This results in the control input of each 

machine being a function of outputs of all machines. 

 

Figure 3: Fast Output Sampling Method. 

In this technique an output feedback law is used to 

realize a discrete state feedback gain by  multirate 

observations of the output signal. The control signal is 

held constant during 

qk 
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each sampling interval  . Let ( , , C ) be the system 

[42] sampled at rate 1/ 

y(kτ  τ) 
y(kτ  τ  Δ)




where  =  /N. Output measurements are taken at time instants 


u(t)  [L0,L1, ,LN1]  

  


  Lyk 




t  l, l  0,1,......., N 1 . The control 
y(kτ  Δ) 



signal u(t), which is applied during the (4.3) 
interval, k  t < (k  1)is then 

constructed as a linear combination of For k  t < (k  1) , where the matrix 

the last N output observations [66-67]. 
 

Consider a plant described by a linear model 

 
x          Ax  Bu 

(4.1)
 

y  Cx 

 
with (A,B) controllable and (C,A) observable. 

Assume the plant is to be controlled by a digital 

controller, with sampling time v and zero order hold, 

and that a sampled data state feedback design has 

been carried out to find a state feedback gain F such 

that the closed loop system 

x(k  )  (   F)x(k) (4.2) 

blocks Li represent output feedback gains, and the 

notation L, yk has been introduced for convenience. 

Note that 1/  is the rate at which the loop is closed, 

whereas output samples are taken at the N-times faster 

rate 1/  . This control law is illustrated in fig. 2.6. 

To show how a fast output sampling controller 

can be designed to realize the given sampled-data state 

feedback gain, we construct  a fictitious, lifted system 

for  static output feedback. Let ( , , C ) denote 

the system at the rate 1/  where = 

/N. 

Consider the discrete-time 

system having at time t= k  the input 

has desired properties. Hence   eA uk = u(k  ), state xk = x(k  ) and output 

and 
τ 

Γτ   e 
0 

As
dsB . Instead of using a 

yk as 

state observer, the following sampled x(k  1)  Φ τ x k  Γτu k (4.4) 

data control can be used to realize the effect of the 

state feedback gain F by 

y(k  1)  C 0 x k  D 0 u k . (4.5) 

output feedback. Let  =  /N and consider where C0 and D0 are defined as 
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



0 

. 


F

 
I 

    















 

 

 

 

C 


C 



C0  .  , 
. 

action. To reduce this effect we relax the condition that L exactly 

satisfy the above linear equation and include a constraint on the L 


C N1 

  
L

  ρ1 

 
  LD0  FΓτ  ρ2 (4.11) 
C 
  LC  F   ρ3 

D 0  . 
 
 

LMI Formulation [67] of above eqns. is 

C
N2 

 j
  2 

 j0 

 ρ1 I 

L 
  0 

   L
T  I

Let  F be an initial  state feedback gains 
such    that    the    closed    loop system 

  ρ2 
2
I 

LD  FΓ T
 

LD0  FΓτ   0
 

 I (4.12) 

matrix (   F) has no eigenvalues at  0 τ   
 ρ  2I LC-F

the origin. Then one can define a fictitious 

measurement matrix, 

3 

 LC-F  I 
  0 

 

C(F, N)  (C0  D0F)(  F)1 (4.6) If the initial state is unknown,  there will be an error Δu k 

 u k  Fx k in 

which satisfies the fictitious measurement 

equation 

y(k)  Cx(k) 

 

 
(4.7) 

constructing the control signal under state feedback. 

One can verify that the closed loop dynamics are 

governed by 

Let ν denote the observability index of  xk1  
 
  F   xk 


uk1 

  
0

 LD0  F 

uk 




( , C ). N is chosen to be greater than     

or equal to ν . So that any state feedback gain can be 

realized by a fast output sampling gain L. 

(4.13) 

To see this, apply the coordinate transformation 

 
The control law is of form 

u k  Ly k 

 
 

(4.8) 

 

to the equation 

T  
 I    0

 

(4.14) 

For the output feedback gain L to  xk1  
 
    xk  (4.15) 

realize the effect of F it must satisfy 

uk1 





LC0 LD0 


u k 




x k1  (   F)x k  (   LC)x k 

(4.9) 

Thus, one can say that the eigenvalues of the closed loop 

system under a fast 

i.e. LC  F (4.10) output sampling control law are those 

The controller obtained from the above of (  F) together with those of 

equation will give desired  behavior, but might 

require excessive control 
(LD 0  F ) . 
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 MODEL ORDER REDUCTION USING 

PSO 

ALGORITHM 
 

Consider the following nth order LTI system: 

In order to describe the steps of the PSO algorithm for 

MOR, we will define the given parameters and the 

necessary specifications. 

 
Various parameters setting: 

. 

x f (t)  A f x(t)  Bf u(t) 

yf (t)  Cf x(t)  Df u(t) 

(6.4) 

(6.5) 

1. Set the full order system parameters i.e. 

Nfull=40. 
2. Set appropriate level step 

Where xf ∈ ℜn is the state vector, u ∈ ℜp , and yf ∈ 

ℜm are the input and output vectors, respectively. The 

matrices Af, Bf, Cf, and Df are the full order system 

matrices with their appropriate dimensions. Let the 

eigenvalues of the above full order system is given 

as: 

1   2  ....  n . (6.6) On the 

other hand, consider the  reduced order LTI system 

with order r: 

inputs to the system. 

3. Simulate the outputs yf, of the full order system 

with a  suitable sampling time. 

4. Choose a suitable order of the reduced order system 

based on the dominant eigenvalues i.e. Nr=10. 

5. Set the PSO parameters: 

a. The size of the particle, P=200. 

. 

x r (t)  A r x(t)  Bru(t) 

yr (t)  Cr x(t)  Dr u(t) 

(6.7) 

(6.8) 

b. The number of particles in the swarm, M=25. 

xr ∈ ℜr is the state vector of the reduced order 

system, u ∈ ℜp , and yr 

∈ ℜm are the input and output vectors, respectively. 

The matrices Ar, Br, Cr, and Dr are the reduced order 

system matrices with their appropriate dimensions. 

The eigenvalues of reduced order system are chosen 

to be the dominant eigenvalues of the full order 

system given as: 

1   2  ....  r . (6.9) The Ar matrix is 

chosen to be diagonal matrix with the dominant 

eigenvalues 

c. The counter of iteration (I = 1) and the maximum 

number of iterations, Lmax=100. 

6. A reasonable range for the parameters should be 

chosen. This requires specifications of the 

minimum and maximum values for each parameter. 

7. A good fitness function that is well representative 

of the parameters is crucial in  the PSO algorithm. 

The mean- 
squared error 

are assigned as the diagonal elements. 
  

1  m N  2 (6.10) 

The elements of other matrices are chosen by PSO 

algorithm. 

MSE 
k1 

[y f (k, i) 
i1 

yr (k, i)] 

where N is  the number of samples,   m 
is the number of outputs, yf(k, i) is   the 

N 
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ith sample of the kth output of full order system and 

yr(k,i) is the ith sample of the kth output of reduced 

order system. 

 
In this paper, the fitness function used in the PSO 

algorithm is the minimization of mean-squared error 

(MSE), 

Table 1: Location of faults: 10 machine and 39 bus 

system 

 

Fitness = min (MSE) (6.11) 

 

Figure 4: Flowchart for PSO 

 

3. RESULTS AND DISCUSSION 
 

A SIMULINK based block diagram 

including all the nonlinear blocks is generated using 

machine model 1.0 [42-44]. The output slip signal 

with robust decentralized gain L and a limiter is 

added to Vref signal. The output must be limited to 

prevent the PSS acting to counter action of AVR. 

Different operating points are taken as the different 

models. 

 

 

 

 
Figure 5: Closed loop responses with fault using decentralized fast 

output sampling feedback controller via reduced order Model. 

The location of fault considered for 

various models is given in Table 1: 

S.No. Model Fault at Bus 

1 Model1 Bus16 

2 Model 2 Bus 13 

3 Model 3 Bus 11 

4 Model 4 Bus 9 

5 Model 5 Bus 7 

6 Model 6 Bus 17 

7 Model 7 Bus 19 

8 Model 8 Bus 21 
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Figure 6: Closed loop responses with fault Figure 8: Closed loop responses with fault 

using decentralized fast output sampling feedback controller via 

reduced order Model. 

 

 

Figure 7: Closed loop responses with fault 

using decentralized fast output sampling feedback controller via 

reduced order Model. 
 

 

Figure 9: Closed loop responses with fault using decentralized fast 

output sampling feedback controller via reduced order Model. 

using decentralized fast output sampling 4. CONCLUSION 

feedback controller via reduced order Model. This work presents a comparatively 

study of design of fast output sampling feedback controllers via reduced order model       using       Particle       

Swarm 

Optimization (PSO) method and 

Davison    method    for  multi-machine 
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system stability enhancement. Particle swarm 

optimization (PSO) model reduction method gives 

very good results in the design of Power System 

Stabilizers and also economic and less complexity in 

designing of power system stabilizers comparatively 

Davison method. The proposed  method results are  

satisfactory response to damp out the oscillations. 
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